
www.manaraa.com

Structural Signatures for Tree Data Structures

Ashish Kundu
Department of Computer Science, Purdue

University, West Lafayette, IN, USA

ashishk@cs.purdue.edu

Elisa Bertino
Department of Computer Science, Purdue

University, West Lafayette, IN, USA

bertino@cs.purdue.edu

ABSTRACT
Data sharing with multiple parties over a third-party distri-
bution framework requires that both data integrity and con-
fidentiality be assured. One of the most widely used data
organization structures is the tree structure. When such
structures encode sensitive information (such as in XML
documents), it is crucial that integrity and confidentiality be
assured not only for the content, but also for the structure.
Digital signature schemes are commonly used to authenti-
cate the integrity of the data. The most widely used such
technique for tree structures is the Merkle hash technique,
which however is known to be “not hiding”, thus leading
to unauthorized leakage of information. Most techniques in
the literature are based on the Merkle hash technique and
thus suffer from the problem of unauthorized information
leakages. Assurance of integrity and confidentiality (no leak-
ages) of tree-structured data is an important problem in the
context of secure data publishing and content distribution
systems.

In this paper, we propose a signature scheme for tree
structures, which assures both confidentiality and integrity
and is also efficient, especially in third-party distribution
environments. Our integrity assurance technique, which
we refer to as the “Structural signature scheme”, is based
on the structure of the tree as defined by tree traversals
(pre-order, post-order, in-order) and is defined using a ran-
domized notion of such traversal numbers. In addition to
formally defining the technique, we prove that it protects
against violations of content and structural integrity and in-
formation leakages. We also show through complexity and
performance analysis that the structural signature scheme
is efficient; with respect to the Merkle hash technique, it in-
curs comparable cost for signing the trees and incurs lower
cost for user-side integrity verification.

1. INTRODUCTION
Data sharing among multiple parties with high integrity

assurance is an important problem which has been widely in-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘08, August 24-30, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

vestigated. An integrity assurance technique provides mech-
anisms using which a user can verify that the data has not
been tampered with. Specific integrity assurance require-
ments and techniques depend on the structure according
to which the data are organized. Because one of the most
widely used data organization structures is the tree struc-
ture (see the XML-based example in Section 2), the devel-
opment of techniques specifically suited for data organized
according to such tree structures is crucial. When address-
ing the problem of integrity for tree structures it is impor-
tant to notice that each node typically contains some content
and that the structural relationships between the nodes may
establish some relationships between the contents in these
nodes. Such relationships may be defined according to prop-
erties such as classification, indexing, temporal-orientation
and sensitivity of the contents [10]. Integrity of such rela-
tionships is referred to as structural integrity, whereas the
integrity of the contents is referred to as content integrity.
An integrity mechanism for tree structures must thus pre-
serve both content and structural integrity. In many cases
such as healthcare and military scenarios, an additional re-
quirement is to maintain the confidentiality of the content
and the structural information [26]. By confidentiality we
mean that: (i) a user receives only those nodes and the
structural information that the user is allowed to access,
according to the stated access control policies; (ii) a user
should not receive nor should be able to infer any informa-
tion about the content and presence of nodes and structural
information that the user is not authorized to access.

The Merkle hash technique [21] is the most well known in-
tegrity assurance technique for tree structures and has been
widely extended for use in high-assurance integrity content
distribution systems and in secure data publishing [4, 8, 12,
14, 18, 20]. A drawback of such technique is that the in-
tegrity verification process does not preserve confidentiality.
Merkle hash is binding (integrity) but not hiding (confiden-
tiality) [5]; therefore it is vulnerable to inference attacks1.
The signature of a non-leaf node combines the signatures of
its children nodes in a particular order. Further, in order
to allow the user to compute the hash of a node during in-
tegrity verification, the signatures of a set of nodes/subtrees
in the tree has to be revealed to the user, even if the user
does not have access to these nodes/subtrees. By the mere

1The inference problem is a widely investigated problem in
computer and information security [22]. An important issue
is to avoid that mechanisms designed to address one secu-
rity requirement, i.e. integrity, undermine the other relevant
security requirement, i.e. confidentiality

138

Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyright for components of this work owned by others than VLDB
Endowment must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers or to redistribute to lists requires prior specific
permission and/or a fee. Request permission to republish from:
Publications Dept., ACM, Inc. Fax +1 (212) 869-0481 or
permissions@acm.org.

PVLDB '08, August 23-28, 2008, Auckland, New Zealand
Copyright 2008 VLDB Endowment, ACM 978-1-60558-305-1/08/08

www.manaraa.com

fact that such signatures are received, the user may infer
that a given node, to which the user has access, has a sib-
ling/parent/child node, even though the user does not have
access to it. Such an inference may lead to confidentiality
breaches, as we will show through an example in Section 2.

More specifically, the integrity verification of a subtree S,
which belongs to a tree T by using the Merkle hash technique
reveals: (1) the signature (Merkle hash) of some nodes which
are in T but not in S; (2) the structural relationship between
a node x in S and some node y which is in T but not in
S; and (3) the relative (structural) order between a node x
which is in S and y, which is in T but not in S. One approach
to avoid such information leakage is to pre-compute and
store a separate Merkle signature for every distinct subtree
that may be the result of a query or a request to access the
tree. However such an aproach is impractical because the
result of a query can be an arbitrary subtree and there can
be an exponential number of such subtrees in a tree.

The problem that the paper addresses is as follows: The
trusted owner Alice of a data item organized as a (rooted)
tree T wants to digitally sign T once so that it can be queried
or accessed many times. A user Bob should be able to verify
the integrity of the content and structure of a subtree S
(of T) that Bob is authorized to access. Any information
about a node which is in T but not in S, its signature, its
structural relationship with any other node in T should not
be revealed to Bob. Obviously the Merkle hash technique
cannot be effectively used for this purpose. In this paper, we
propose an integrity assurance technique for tree structures
which is secure against the above information leakages and
is also efficient.

The distribution of data is often carried out through third
parties, which are not completely trusted in the sense that
the trusted owner relies on the third party D for the dis-
tribution but does not wish to provide D the authority to
sign on its behalf. This may not be due to a lack of trust in
D but merely a recognition of the fact that typical systems
such as D are more vulnerable (to breakdowns, spy wares,
insider misbehavior, or simply accidents) than the trusted
owner. This model offers many advantages, but also offers
a challenge: How does the third-party distributor D, which
does not have the authority to sign (only Alice does), prove
to a user the integrity of the data provided to the user with-
out leading to leakage of information related to structure as
well as content?

The obvious answer is to sign the data (tree) once and
store at D a number of integrity verification items that D
can later on provide to any user who is legitimately request-
ing a subset of the data (a subtree) which the user is autho-
rized to access. These integrity verification items are cryp-
tographic hashes or signatures that enable the user to verify
the integrity of the subtree with respect to both content and
structure that it receives.

Our integrity assurance technique, which we call the “struc-
tural signature scheme”, overcomes the drawbacks of Merkle
hash technique and related techniques. In this scheme, the
signature of a tree, called “structural signature”, is based on
the structure of the tree as defined by tree traversals - post-
order, pre-order and in-order. It is well-known that a non-
binary tree can uniquely be re-constructed from its post-
order and pre-order sequences of vertices [7] and a binary
tree from its in-order and pre-order/post-order sequences of
vertices [16]. Our tree signature is based on such property

and is defined using a randomized notion of such traversal
numbers, which are extensions of the respective traversal
numbers. The structural signature scheme further helps in
reducing the computational cost at the trusted owner, which
signs the tree, and at the user side. It also helps in reduc-
ing the communication cost between the distributor and the
user. In the paper, in addition to formally defining the tech-
nique, we prove that it protects against violations of content
and structural integrity and information leakages. We also
carry out a performance analysis and show that our tech-
nique is competitive in terms of performance with respect
to the Merkle hash technique.

Novelties of the Structural Signature Scheme. The struc-
tural signature scheme possesses several novel features over
existing techniques:

• It provides stronger security guarantees in terms of
integrity and confidentiality.

• It simplifies the transmission of tree-based data from
a distributor to a user and improves the efficiency of
such transmission. It facilitates sending only the nodes
of a subtree to a user; no structural information about
the parent-child and the ordering between the siblings
needs to be sent. Note that the Merkle hash technique
and the related techniques require sending the subtree
as it is - the nodes and the structural information,
which incurs more cost.

• Like the Merkle hash technique, it facilitates precise
detection of integrity violations in the sense that it
precisely identifies the node or the structural relation-
ship that has been compromised.

• While its signature generation time is comparable to
that of the Merkle hash technique, the user-side in-
tegrity verification time that it requires is less than
the time taken by the Merkle hash technique.

Organization of the Paper. The paper is organized as fol-
lows. Section 2 presents a running example. The threat
model considered in the paper is described in Section 3.
The notations used in the paper and a background on tree
traversal numbers are given in Section 4. Section 5 intro-
duces the notion of randomized traversal numbers and two
key lemmas. These lemmas are used to define the notion
of structural signature in the next section - Section 6; this
section also defines the steps for signing a tree and verify-
ing the content and structural integrity of subtrees received
by a user. Section 7 illustrates our signature scheme using
the running example. Security analysis and performance of
the structural signatures are discussed in Section 8 and 9,
respectively. Section 9.4 discusses its non-repudiation prop-
erty, management of dynamic updates, and its advantages.
Related work is presented in Section 10. Finally, Section 11
concludes the paper.

2. RUNNING EXAMPLE
Our running example is in the area of XML data manage-

ment. XML organizes data according to the tree structure;
integrity and confidentiality of XML data is an important

139

www.manaraa.com

<HealthRecord>
. . .
<PatientID id=2345S>
. . .
</PatientID>
<Contact>

. . .
</Contact>
<CriticalDiseases>

<Disease name=Cancer>
<Surgery>
. . .
</Surgery>
<Chemotherapy>

<Treatment instance=1>
<Doctor name=Dr. S. Stevens/>
<DateTime date=20Feb2003 time=2PM/>

</Treatment>
<Treatment instance=2>

<Doctor name=Dr. M. Paul/>
<DateTime date=17Jan2003 time=12PM/>

</Treatment>
</Chemotherapy>
<Medication>
. . .
</Medication>

</Disease>
<Disease name=KidneyFailure>

. . .
</Disease>

</CriticalDiseases>
. . .

</HealthRecord>

(a)

Figure 1: (a) XML-based Health-care record of a patient. (b) The tree representation of the HealthRecord.

requirement, given the widespread adoption of XML for dis-
tributed web-based applications. As such, XML is an im-
portant application domain for the techniques presented in
the paper.

The XML document in Figure 1 is the health-care record
of a patient and thus contains sensitive information. As-
sume that such record is stored in a hospital database and
that its schema, referred to as HealthRecord, is defined as fol-
lows. The HealthRecord element, that is, the root of the tree
has a child for each of the following elements: CriticalDis-
eases, PatientID and Contact. The CriticalDiseases element
is used to list all the critical diseases a patient suffers from;
information about a specific critical disease is specified as its
child by the element Disease. Inside each Disease element,
the types of treatment that the patient has gone through
for that same disease are listed. For Cancer, the types of
treatment are specified by the following elements: Surgery,
Chemotherapy, and Medication. Each type of administered
treatment is specified as a child node of the node specific to
the treatment type and is an instance of Treatment element.
It contains an attribute instance, which refers to the specific
instance of the treatment, and child elements to specify the
date and time of administering (DateTime), and the name
of the doctor who administered the treatment (Doctor). A
patient may have received treatments from different doc-
tors, each related to a different instance of the same type of
treatment or instance of a different type of treatment. For

expository purposes, we have associated a label with each
node in the health record in Figure 1(b); for example, the
node Chemotherapy is labeled by a8.

The hospital database, which can be accessed remotely,
stores all such patient health records. The Merkle hash
technique is used to sign the tree and support integrity ver-
ification by the data consumer. Table 1 (in the Appendix)
presents the details of how to compute and verify the Merkle
hash for each node in the tree in Figure 1(b). The third col-
umn of such table also lists the information which is leaked
when the integrity of a node is verified.

Consider the following scenario. A cashier has access to
the subtree S1, shown in Figure 1, including the root a1,
that are essential for financial and administrative purposes.
She does not have access to a4 and its content that refers
to CriticalDiseases. An access to the health-record in Fig-
ure 1(a) leads to the integrity verification of this portion of
the health record at the side of the cashier. During this pro-
cess, the cashier receives the Merkle hash of a node x and she
also receives the following information: x is a child of a1 and
is on the left side of a2 and a3. By knowledge of the schema,
the cashier determines that a node at such position must be
the CriticalDiseases node. Thus the cashier infers that the
patient is definitely suffering from some critical disease. If
the hospital specializes in some specific critical disease(s),
the cashier can further infer which (possible) disease the
patient is suffering from. Each of these inferences leads to

140

www.manaraa.com

disclosure of information that is sensitive for the patient.
We now consider another scenario, which leads to leakage

of more detailed sensitive information. A nurse has access
to S2 and a1 from the record in Figure 1. He has access
to S2, because he works with the doctor S. Stevenson, who
prescribed the administering of this treatment. The nurse
receives S2 and a1 and the corresponding signature informa-
tion from the remote database. In order to be able to verify
the integrity of S2, he also receives the signature of a6, a7,
a9 and a11.

The schema of HealthRecord specifies that a child of Crit-
icalDiseases refers to a critical disease from which a patient
suffers from. By receiving the signature for a6, which is a
child of the node a4 (element CriticalDiseases), the nurse
infers that the patient is suffering from another critical dis-
ease different from cancer. This is a disclosure of private
information, to which the nurse does not have access to.
Assume that the hospital of our example specializes on the
treatment of only a limited number of critical diseases. It is
thus easy to infer what the other disease is. Furthermore,
by inferring that a5 has two siblings, that is, a7 and a9, the
nurse is able to infer that the patient has gone through two
other treatments other than chemotherapy. Such inference
may easily lead to determine the seriousness of the illness.
In addition, from the schema, the nurse can infer that these
nodes refer to Surgery and Medication, which reveals that
the patient has been received either or both of these treat-
ments. If the hospital has two doctors who specialize in
Surgery or Medication, then the knowledge that the patient
has been treated with Surgery or Medication leads to more
information, such as that he has been treated by more than
one doctors and who (possibly) has been his doctor.

Furthermore, by the disclosure of the signature of node
a11 and its structural relationship with a8 as its child, and
by knowing that children of a Chemotherapy element refer
to the treatment instances, the nurse is sure that the pa-
tient went through another Chemotherapy treatment and
possibly with another doctor. Additional knowledge about
doctors and the hospital could lead to more leakage.

3. THREAT MODEL
There are two threats that we want to protect against:

data tampering attack that compromises data integrity and
inference of information to which a user is not authorized.

Data tampering attack. An attacker wishes to tamper the
content and/or the structural order between two or more
nodes of a subtree S of a tree T that a receiver has access
to.

Inference attack. The user Bob, who has access to the sub-
tree S of a tree T is aware of the context, the schema of the
tree-based representation of S and T , and can exploit the in-
formation leaked along-with S to infer sensitive information
from each or a combination of the information units leaked:

• Leakage of signature of a node/subtree (y) in T but
not in S: By comparing the signature of such a node
with that of a node/subtree (x) in S, the attacker de-
termines if x and y are identical subtrees (the hash
operation used to compute Merkle hash is assumed to
be collision resistant). He also learns about the exis-
tence of another node/subtree in T but not in S.

• Leakage of structural relationship between x in S and
y: By knowing the specific relationship between two
nodes, which may be either parent-child, ancestor- de-
scendant or sibling-sibling, the attacker infers the na-
ture and type of the sensitive information embedded in
y in the context of x. As we saw in the health-care ex-
ample earlier, such leakage leads to inference of exact
information (Table 2 in the Appendix).

• Leakage of structural order between x and y: By know-
ing the specific order of x and y, which is either y is to
the left of x or right of x, the attacker infers sensitive
information such as a temporal relation between x and
y.

4. BACKGROUND
In this section, we present the notations used in the paper

and a review of tree traversals, which are central to the
proposed signature mechanism.

4.1 Notations
A (rooted) tree is referred to as T or T (V, E), where V

and E denote the set of vertices and edges, respectively. S
refers to a subtree. Sx(Vx, Ex) refers to a subtree with root
x and the set of vertices and edges Vx and Ex, respectively.
A binary tree is a tree, in which each node has at most two
children and each child is either a left or a right child [17].
The term “tree” in this paper refers to a “non-binary” tree,
unless otherwise explicitly referred to as “binary” tree. Cx

refers to the content of a node x.
h refers to a collision-resistant one-way hash function and
|r| denotes the number of bits used to represent a floating
point number r.

We introduce a few more notations that are dependent on
the context, as we proceed in the paper.

4.2 Review of Tree Traversals
Post-order, pre-order and in-order tree traversals are de-

fined in [17]. While post-order and pre-order traversals are
defined for all types of trees, in-order traversal is defined
only for binary trees. In each of these traversals, the first
node visited is assigned 1 as its visit count. For every sub-
sequent vertex visited, the visit count is incremented by 1
and is assigned to the vertex. This sequence of numbers is
called the sequence of post-order (PON), pre-order (RON)
or in-order (ION) numbers for the tree T , depending on the
particular type of traversal.

Properties of traversal numbers: The post-order number
of a node is smaller than that of its parent. The pre-order
number of a node is greater than that of its parent. The
in-order number of a node in a binary tree is greater than
that of its left child and smaller than that of its right child.
A specific traversal number of a node l is always smaller
than that of its right sibling r ; i.e., pl is smaller than pr.
The distribution and range of the traversal numbers are uni-
form and deterministic ([1, 2, . . . , |V |]). The determinism of
the distribution and range of the traversal numbers make
them unsuitable for our purposes as they reveal information
about the approximate size of the data and the position of
the subset of data in the data set. The structural signa-
ture as defined later is based on these traversal numbers.
It is possible for an adversary to exploit this information
and replace a signed node with a compromised or a differ-

141

www.manaraa.com

ent node altogether by assigning it to the original pre-order
number. Siblings can be interchanged and the correspond-
ing visit counts could also be interchanged while satisfying
the specific properties.

In order to overcome the above limitations of the traver-
sal numbers, we propose the notion of randomized traversal
numbers - randomized post-order, pre-order and in-order
numbers (referred to as RPON, RRON, and RION, respec-
tively).

5. RANDOMIZED TRAVERSAL NUMBERS
The definition of randomized post-order numbers is a gen-

eralization of the one proposed in [19], which proposes the
notion of encrypted post-order numbers (not pre-order or in-
order) for distribution of content; the encrypted post-order
numbers are used as the indexing and routing parameter for
the content.

We transform a traversal number into a unique random
number such that the order between the traversal numbers
(of a specific traversal) is preserved. By preserving the or-
der of their original counterparts, the randomized traversal
numbers preserve their properties. For an unordered tree,
we transform a traversal number into a unique random num-
ber such that the order between the traversal numbers (of
a specific traversal) for ancestors and descendants is pre-
served, whereas the order between such numbers among sib-
lings does not need to be preserved. The distribution and
range of randomized traversal numbers is non-uniform and
non-deterministic.

Definition 5.1. The set of randomized traversal num-
bers of a tree T is defined as the set of distinct real num-
bers chosen randomly through a transformation of the set
of traversal numbers, that is, T e = ζ(T), where: T and
T e refer to the set of traversal numbers and their random-
ized counterparts, respectively; ζ is a random transforma-
tion function such that for ordered trees, the order among
all traversal numbers is preserved, and for unordered trees,
the order among such numbers assigned to ancestors and
descendants are preserved, while the order among those as-
signed to siblings does not need to be preserved.

The randomized transformations of post-order, pre-order
and in-order numbers are called as randomized post-order
(RPON), randomized pre-order (RRON) or randomized in-
order (RION) numbers. RPON, RRON and RION for a
node x are referred to as px, rx and ix, respectively.

The following lemmas provide the basis for defining the
notion of structural signature for trees using randomized
traversal numbers in the next section.

Lemma 5.2. The pair of randomized in-order number and
either post-order or pre-order number for a node in a binary
tree correctly and uniquely determines the position of the
node in the structure of the tree, where the position of a
node is defined by its parent and its status as the left or
right child of that parent.

Proof. From the in-order and either post-order or pre-
order traversal sequences of the vertices, it is possible to
uniquely re-construct a binary tree [16]. Thus from these
sequences or from their randomized counterparts, for a node,
it is possible to correctly identify its parent and its status
as left or right child of that parent in the tree. Thus the
lemma is proved.

Lemma 5.3. The pair of randomized post-order number
and pre-order number for a node in a (non-binary) tree
uniquely determines its position in the structure of the tree,
where the position of a node is defined by its parent and its
siblings to its immediate left and right in the tree.

Proof. It follows from [7].

6. STRUCTURAL SIGNATURES FOR TREES
In this section, we develop structural signatures for trees,

which makes use of the Lemma 5.3 and are defined using the
post-order and pre-order traversals. Structural signatures
for binary trees are defined identically except that in-order
traversals are used as one of the components in place of
either the post-order and pre-order traversals (Lemma 5.2).
For simplicity of presentation, we focus only on non-binary
trees.

6.1 Notion of Structural Signatures
A structural position uniquely identifies a node in a tree

structure. For non-binary trees, it is defined as a pair of the
RPON and the RRON of a node and for binary trees it is
defined as a pair of the RION and RPON (or RRON) of the
node.

The structural signature for the tree T (V, E) denoted by
GT , is a hash of the structural position and content of all
the nodes in the tree, taken in a particular sequence of the
vertices, such as a post-order sequence. The hash is further
certified by a trusted entity (the owner or a certifying au-
thority). The signature can be salted by the addition of a
random value if the fact that the received subtree (sent to
the user) is same as the original tree needs to be protected as
a sensitive information. The (salted) tree signature is pub-
licly available or passed to the user alongwith the subtree it
has access to.

The structural signature of a node x in tree T is defined
as a hash of the structural position and content of x and the
(salted) signature of the tree GT . The hash is further certi-
fied by a trusted entity (the owner or a certifying authority).
The use of the structural position in the computation of the
hash binds the content and the tree signature to the node x,
because the structural position (pair of RPON and RRON)
of a node is unique in a given tree. The formal definitions
of these notions are as follows. ‖ denotes to the string con-
catenation operation.

Definition 6.1. Let x be a node in tree T (V, E). Its
structural position, denoted by ρx, is defined as a pair of
its RPON px and RRON rx, that is, ρx = (px, rx).

Definition 6.2. Let the nodes in tree T (V, E) be referred
to as 1, 2, . . ., n, where n = |V |. Let h denote a one-way
cryptographic hash function. The structural signature of the
tree T , denoted by GT , is defined as GT = h(ρ1 ‖ C1 ‖ ρ2‖
C2 ‖ . . . ‖ ρi ‖ Ci ‖ . . . ‖ ρn ‖ Cn).

Definition 6.3. Let x be a node in tree T (V, E). The
structural signature of x, denoted by Gx, is defined as Gx =
h(GT ‖ ρx ‖ Cx).

Any modification of the content or the tree-structure, af-
ter the tree is signed, would be detected. If x has not been
tampered with, the signature Gx with which the node is
signed is same as the hash of the following elements: GT

(publicly available or provided with the subtree), ρx and
Cx. If they are not equal, then x has been tampered with.

142

www.manaraa.com

6.2 Signing a Tree
The steps that the trusted owner Alice follows in order to

sign and share a tree T (V, E) with Bob and other clients are
given below.

1. Compute the post-order and pre-order numbers for
each node in T .

2. For each node x in V : transform the post-order and
pre-numbers into randomized post-order and pre-order
numbers denoted respectively as px and rx, such that

(a) for unordered trees, RPON’s and RRON’s among
the siblings do not need to preserve any order,
while for ancestors and descendants, they need to
preserve the order;

(b) for ordered trees, RPON’s and RRON’s for all
nodes, need to preserve the order.

3. Assign (px, rx) to x as its structural position ρx.

4. Compute the structural signature of the tree T , GT

from a specific sequence of vertices (such as the post-
order sequence which can be available from the steps
1 and 2).

5. For each node x in V : compute the signature Gx.

After the signatures are generated, Alice or a Certificate
authority certifies2 GT and the signature Gx of each node x.
Computation of randomized post-order and pre-order num-
bers (Steps 1 and 2 in the above algorithm) can be carried
out in one traversal (instead of two) by processing a node
x for its pre-order number, then recursively processing all
its children; after all the children of x are processed, x is
processed for its post-order number.

How to compute randomized traversal numbers: The in-
terval between two adjacent randomized traversal numbers
is a random. It is either a single random η or is chosen as
follows: draw a random number mi, then draw mi num-
ber of randoms and compute η as follows: η=

P
1≤ j≤ mi

ηj .

Order-preserving encryption (e.g. [3]) may instead be used
for the computation. A set of sorted random numbers are
input to such a technique. The numbers in the output are
used as randomized traversal numbers.

After the tree is signed and the signatures are certified,
the tree is ready to be shared with Bob and other users.
Suppose that Bob wishes to access T and thus sends such a
request to a distributor. Bob has the authorization to access
the subtree Sz(Vz, Ez). Sz(Vz, Ez) can be shared with Bob
according to two different strategies - (1) by sharing the
signed subtree - its nodes and the structure or (2) by sharing
the signed nodes in the subtree and letting Bob reconstruct
the subtree using the RPON’s and RRON’s of the nodes.
We describe both of these options in the following sections.

6.3 Sharing the Subtree along with its Struc-
ture

The distributor sends to Bob: Sz along with its structure
(e.g. in the form of an adjacency matrix) and the structural

2Structural signatures facilitate verification of both struc-
tural and content integrity, while certification of a digest of
the content of a node can be used to verify only the integrity
of content, not the structural integrity.

signature of each node in this subtree (and the structural sig-
nature of the tree if it is not publicly available). Bob receives
the subtree and it refers to it as R(Vr, Er) (with a different
name in order avoid any ambiguity). Bob is aware of the h
function used. He verifies the integrity of each node. Next,
he verifies the integrity of structural relationships among all
those nodes in R(Vr, Er), whose integrity and authenticity
have been correctly verified.

Authentication of Signatures. Bob verifies the certificate
of the signature of the tree T and the signature of each node
in Sz. If the certificate is valid, then the signature of the
node is valid. A spurious node would not be certified by a
trusted entity; so such a node would be detected during this
process.

Integrity Verification for Content and Signature

1. For each node y in the set of received nodes Vr, Bob
computes its structural signature from its position and
content and compares it with the signature Gy with
which y has been signed:

(a) temp ← h(GT ‖ ρy ‖ Cy)

(b) If temp is same as Gy then the integrity of the
node y is verified.

Integrity Verification for Structural Relations. Integrity
verification of structural relations in a tree involves travers-
ing the tree and comparing the RPON (RRON) of each node
with the RPON (RRON) of its parent or its sibling. The
steps are as follows.

1. Carry out a pre-order traversal on R.

2. Let x be the parent of z; if ((px≤ pz) or (rx≥ rz)), then
parent-child relationship between x and z is incorrect.

3. For ordered trees, let y be the right sibling of z; if ((pz

≥ py) or (rz ≥ ry)), then the left-right order among
the siblings y and z is incorrect.

6.4 Sharing a Subtree - only the Nodes
An advantage of the structural signatures is that there is

no need to supply the user with the structure of the subtree
it is receiving. Our scheme reduces the amount of data that
needs to be transmitted from the distributor to the users
and thus improves the efficiency of the data distribution.
The structure can be reconstructed from the pre-order and
post-order traversals (for non-binary trees [7]) (in-order and
pre/post-traversals for binary trees [16]). The subtree is
shared as a set of nodes signed by the structural signature.
Such a set of nodes received by the user is processed as
follows:

Reconstruction of a Subtree using Structural Signa-
tures. The structural position of a node includes the RPONs
and RRONs, which possess the same properties as that of
the post-order and pre-order numbers. The subtree recon-
struction algorithm [7] can thus use RPONs and RRONs.
There is no need to carry out the verification of the struc-
tural integrity, as it is automatically taken care of during
the subtree re-construction process. For binary trees, the

143

www.manaraa.com

algorithm given in [16] can be used, where RIONs would be
used.

1. Authenticate the signatures of the tree and the nodes
by verifying their certificates.

2. Verify the integrity of content and signatures of the
nodes as per the procedure in Section 6.3.

3. Apply the algorithm by Das et al. [7] (Section 3.3)3

for reconstruction of the sub-tree with the following
changes:

(a) use the RRONs and RPONs of the nodes as post-
order and pre-order numbers

(b) if an edge thus constructed involves a node (or
nodes) whose integrity is found to be invalid in the
previous step, then this edge is treated as invalid.

In the algorithm by Das et al. [7], consecutive nodes in post-
order (pre-order) means the nodes with RPONs (RRONs)
that are next to the other.

7. ILLUSTRATION
Consider the tree in our running example (Figure 1) and

suppose that the tree has been assigned post and pre-order
numbers (Figure 2(a)) and their randomized counterparts
(Figure 2(b)). The structural position of each node is rep-
resented as (RPON, RRON) in Figure 2(b). Each node has
a content that consists of the name of its element and at-
tribute value pairs. Since the partial tree signatures and the
hash values are large bit strings (e.g., 160 bits for SHA1),
we do not show their values.

The cashier has access to the subtree S1. The database
D sends two nodes - a2 and a3, their structural signatures
alongwith the (salted) tree-signature GT . The cashier re-
ceives two nodes a2 and a3. She applies the integrity veri-
fication procedure on each of these nodes. She applies the
hash function to the concatenation of the GT , 66.2, 69.1 and
C2). Then she verifies if the resulting value is equal to the
received node signature of a2; if this is the case, then the
integrity of the node is verified. If the content/structural
position of the node a2 has been compromised, then it can
be detected during this process. The same procedure is fol-
lowed for a3. The cashier verifies the structural integrity. a2

and a3 were sent as siblings. The cashier verifies whether the
RRON of a2 p2 (=66.2) is smaller than that of a3 p3(=69.5);
if so, then a3 is an ancestor or a right sibling of a2. However
since p2 (=69.1) < p3 (=78.2), a3 is not an ancestor of a2.
Thus their relationship is correctly verified.

The nurse is authorized to access a S2; however suppose he
receives a S2 that is tampered, such that in the tampered
tree, a10 is the child of the node a5 and a left sibling of
a8. Such a violation of structural integrity can be detected
by comparing the structural positions of the nodes as in
Section 6.3. The RRON of node a10 is greater than that
of a8, which means that a10 cannot be a left sibling of a8.
If a10 is received as the right sibling of a8, the structural
integrity is violated. Such violation is detected, because the
RPON of a10 is smaller than that of a8, which means that
a10 cannot be a right sibling of a8.

3Due to space limits, we could not replicate the algorithm
from [7].

8. SECURITY ANALYSIS
This section analyzes the soundness of the structural sig-

natures in terms of its integrity and confidentiality guaran-
tees with respect to information leakage defined earlier.

8.1 Integrity

Lemma 8.1. Subject to the one-way and collision-resistant
properties of the hash function h, any integrity violation of a
node in a tree can be detected by using structural signatures.

Proof. Any compromise of the content Cx or the struc-
tural position of a node x ρx in T would invalidate the struc-
tural signature Gx, which is a hash of a message that con-
tains Cx and ρx, unless the hash function h encounters a
collision, which contradicts our assumption. Any unautho-
rized re-ordering between two or more nodes (violation of
structural integrity) can be detected using the RPON’s and
RRON’s (Lemma 5.3). Suppose x belongs to another tree
T ′, different from T , but claimed to belong to T . Such a
forgery is possible when the signature of T , GT , is identical
to that of T ′, GT ′ . GT and T ′, GT ′ are identical only when
the one-way hash h has encountered a collision, which is a
contradiction to our assumption (and the Random Oracle
Hypothesis [25]). Can such a tree T ′ be found such that a
collision be deliberately generated? By the property of h,
it is “hard” to do so (under the Random Oracle Hypothe-
sis).

8.2 Leakage
Suppose that Bob has access to a subtree Sz(Vz, Ez) in

T . Let x and y be two immediate siblings in Sz, left and
right respectively. Can Bob determine the existence of any
other node u which he does not have access to, between two
siblings x and y, by knowing the RPON’s and RRON’s of x
and y?

In an unordered tree, there is no such leakage of infor-
mation, as RPONs and RRONs among siblings do not have
any order. In an ordered tree, there is no leakage, because
the probability of inference is negligible4 - (1

2k , for a large
k).

Without loss of generality, let (py - px) be smaller than (ry

- rx). Thus there is a better chance to infer some information
from (py - px) (= temp). However, the interval between
two RPON’s is a random value. There are many possible
real numbers between two RPON’s, because the RPON’s
are real numbers chosen randomly and can be represented
using r-bits (such as 64-bits or 128-bits). The size of the real
numbers is - 64-bits in IEEE 754 double format. In XLC
(IBM implementation of C for AIX servers [1]), the size of
the double is 128 bits. For 64-bits, the possible number of
real values between the RPON’s of x and y is in the order
of 253 (k is 53). Let temp be i.d, where i is the exponent
and d is the decimal portion of temp. The total number
of possible real values between the RPON’s of x and y are:
i*253 + d*253. Similarly for 128-bit double precision, the
number of RPON’s between x and y and 2117 (k is 117), as
XLC uses an exponent size of 11-bits. The inference is not

4A negligible function is a function that approaches zero
faster than the reciprocal of any polynomial. Such functions
are typically used to prove the security of cryptographic pro-
tocols by showing that the probability that an adversary can
carry out an attack successfully is a negligible function of the
security parameter k [11].

144

www.manaraa.com

(a) (b)

Figure 2: (a) Post-order and pre-order numbers assigned to the Health-care record as (PON, RON). (b)
Randomized post-order and pre-order numbers assigned to the Health-care record as (RPON, RRON).

possible because of the large number of real values between
the RPON’s of x and y - in the order of 253 or 2117.

When the randomized traversal numbers are (treated as)
cryptographically secure random numbers (which can be in-
terpreted as real numbers, such as those supported by Java
Cryptographic Architecture [2]) the size k of such numbers
is 160-bits, or 512-bits. The probability of inference (and
leakage) about the existence of node u between two imme-
diate siblings from such randoms, is negligible (1

2k). The
same argument can be extended for RRON’s and RION’s.

Therefore Bob (as an attacker) can not infer any definite
information about existence and signature of another sibling
in between x and y, given that he has access to x and y.
Further, he can not infer the structural relations or ordering
that do not entirely belong to Sz, that involve nodes that
do not belong to Sz.

Lemma 8.2. Subject to one-way and collision-resistant prop-
erties of the hash operation h, the structural signatures do
not lead to any leakage of (1) node signatures, and informa-
tion about the (2) existence of nodes, (3) structural relations
or (4) structural order among nodes.

Proof. Suppose that a user Bob has access to Sz(Vz, Ez),
a subtree in T . Bob has access to the subtree, structural sig-
nature of T , the node signatures of Sz and their structural
positions. Any leakage would be a direct leakage through
these information or an inference from them.

Direct leakage: Clearly (as per Definitions 6.2 and 6.3,
and the protocols specified in Section 6) Bob does not need
the signature of any node (u) that is in T but not in Sz.
He therefore does not need to know any of the structural

relationships and structural ordering that exist in T , but
not in Sz. Therefore none of (1), (2), (3) and (4) is directly
leaked to Bob; he does not learn any extra information from
the integrity verification process.

Indirect leakage through the signature of the tree and sig-
natures of the nodes in Sz: Under the Random Oracle Hy-
pothesis, the structural signature of the tree does reveals
neither (1) - the existence of u nor (2) - the signature of
u. Similarly, the structural signature of a node leaks neither
(1) and (2). Therefore (3) - the structural relations (edges
or paths) and (4) - t he structural order among nodes in Sz

and u are not revealed by the signatures.
The structural positions (RPON’s and RRON’s) of the

nodes in Sz: RPON’s and RRON’s are real numbers chosen
randomly and can be represented using r-bits (such as 64-
bits or 128-bits). The inference is not possible because of the
large number of real values between the RPON’s of x and y
- in the order of 253 or 2117 (k is 53 or k is 117). When the
randomized traversal numbers are (treated as) cryptograph-
ically secure random numbers (which can be represented as
real numbers) the size of such numbers k is 160-bits, or 512-
bits, the probability of inference (and leakage) about (2) -
the existence of node u between two immediate siblings from
such randoms is negligible (1

2k) [11].
The structural positions of nodes - the RPON’s and RRON’s

cannot be used to determine the structural signature of u.
Since (1) and (2) cannot be inferred from the RPON’s and
RRON’s, (3) and (4) also cannot be inferred from the struc-
tural position of a node.

145

www.manaraa.com

Comparison with Merkle hash. In Merkle hash techniques
and its derivatives, there is a definite release of log(n) in-
formation, both in terms of content and structure. So the
probability information leakage is 1. For structural signa-
tures, there is no direct release of signatures of nodes and
relationship among nodes that the user do not have access
to. Moreover, as we quantified above, in our technique, infer-
ence attacks are also not practical to determine the existence
of any sibling among the two other siblings.

9. PERFORMANCE AND DISCUSSIONS
In this section, we analyze the performance of the struc-

tural signature scheme with respect to the Merkle hash tech-
nique through complexity analysis and experiments.

9.1 Complexity Analysis

Cost of Signature Generation. The pre-order and post-
order numbers can be generated by a single traversal of the
tree T (V, E). The traversal complexity is thus O(|V |). The
complexity for signing a tree according to the signing pro-
cedure in Section 6 is O(|V |).

The storage complexity of structural signatures is:
|ρx|+|GT |+|Gx|, which turns out to be (2*k+|h|+|h|), where
k and |h| are the number of bits used to represent a random
number (RPON/RRON/RION) and the output of the hash
respectively - a constant factor O(1).

Cost of Distribution. If the distribution strategy is to share
the signed subtree SR(VR, ER) including its structure, the
distributor has to send |VR| nodes and information about
|VR|-1 edges. If the distribution strategy is to share only
the signed nodes in the (signed) subtree and the user recon-
structs the subtree using the RPON’s and RRON’s of the
nodes, then the distributor has to send |VR| nodes only. The
latter reduces the communication (sending) cost on the side
of the distributor by about 50% than the former strategy.

Cost of Integrity Verification. If the distribution strategy
is to share the signed subtree including its structure, the
procedure for verification of content integrity incurs a cost
linear in the size of the received subtree SR(VR, ER), that
is, O(|VR|). It accounts for one hashing for each node. The
cost of verification of structural integrity is also linear in
terms of the size of the received subtree, that is, O(|VR|); the
costs of comparison of RPON’s and RRON’s (and RIONs
for binary trees) is constant. If the distribution strategy
is to share only the signed nodes in the subtree (and no
structure), the integrity verification cost comprises the cost
of the integrity verification for the content and the signature,
that is, O(|VR|), and the cost of reconstruction of the subtree
using [7, 16], which is of linear order, that is, O(|VR|).
The reconstruction process verifies the structural integrity as
well. Such a distribution mode reduces the communication
(receiving) cost on the side of the distributor by about 50%
than the former strategy.

9.2 Comparison with the Merkle hash tech-
nique

Cost of Signature Generation. The complexity of gener-
ating Merkle signature for a tree T (V, E) is O(|V |), which

is identical to that of the structural signatures. Our experi-
ments show that structural signature scheme has almost the
same performance as that of the Merkle hash technique; the
difference is only marginal. The latter takes 0.13 seconds
less for 65535 nodes than the former.

The storage complexity of the Merkle signature per node
is |GT |, which is |h| bits, which is of O(1) cost. The storage
requirement of the structural signature scheme is higher in
terms of a constant factor, which is (2*k+|h|). However this
constant factor difference in the storage requirement helps
in improving other costs.

Cost of Distribution. Integrity verification of a subtree
SR(VR, ER) in the Merkle hash technique involves comput-
ing the hashes of: (1) the nodes that are connected (adja-
cent) to a node in SR(VR, ER), but not part of SR(VR, ER),
and (2) the ancestors of R, which is the root of SR(VR, ER).
Such values are not necessary for integrity verification in
case of structural signatures. Let µ refer to the set of the
hashes as specified by (1) and (2) together. Therefore the
distributor has to send all the nodes in the subtree VR, the
hashes in µ, respective structural relations, and ordering.
Thus the communication cost on the side of the distributor
is higher than what it would be if one were to send only SR:
it is in the order of 2 ∗ (|µ| + |VR|) − 1. Moreover (if struc-
tural order is necessary), the distributor also incurs the cost
of sending information about the structural order among all
these nodes. In the case of structural signatures, the com-
munication cost is either 2 ∗ (VR) − 1 (when the nodes and
edges are shared) or VR (when only the nodes are shared).
The structural position of a node takes care of the struc-
tural order among nodes. Obviously communication (send-
ing) cost for the structural signature is almost 50% of such
cost incurred by Merkle hash technique.

Cost of Integrity Verification. Similarly, the user incurs
less communication cost in case of the structural signature
scheme than in the Merkle hash technique, while receiving
the data sent by the distributor. Further in case of the
Merkle hash technique, the user has to verify integrity by
using a higher number of entities, that is, 2∗ (|µ|+ |VR|)−1,
and the proportional amount of information about the struc-
tural order among all these nodes (if structural order is im-
portant). The best case of Merkle hash technique is when
the integrity of the whole tree T (V, E) is to be verified; in
such case, obviously, no hash of any node is required and
integrity verification using the Merkle hash technique has
complexity O(|V |), which is same as the integrity verifi-
cation complexity using the structural signatures, O(|V |).
Thus for integrity verification in comparison to the Merkle
hash technique, the structural signature scheme incurs less
cost, except in the infrequent case in which the user has
access to the whole tree (in such a case, the costs for both
the schemes is identical - equivalent to the cost of signature
generation). Our experimental results corroborate the fact
that integrity verification at the user side using structural
signature is more efficient than using Merkle hash technique.

9.3 Experimental Results
We implemented our structural signature scheme and Merkle

hash technique for trees. Our implementation uses Java
(J2SE5.0) on a IBM T42 Thinkpad with Windows XP, In-
tel Pentium M 1.60GHz and 512MB RAM. With no loss of

146

www.manaraa.com

 0

 100

 200

 300

 400

 500

 600

 700

 2 4 6 8 10 12 14 16

T
im

e
fo

r
si

gn
in

g
in

 n
an

os
ec

on
ds

Height of the complete 2-ary tree being signed

Runtime of signing a tree

Structural signature
Merkle hash

Figure 3: Time taken for signature generation of
a complete 2-ary tree with respect to its height
while using the Structural signature scheme and the
Merkle signature scheme.

 0

 100

 200

 300

 400

 500

 600

 700

 0 10000 20000 30000 40000 50000 60000 70000

T
im

e
fo

r
si

gn
in

g
in

 n
an

os
ec

on
ds

Number of nodes in the complete 2-ary tree being signed

Runtime of signing a tree

Structural signature
Merkle hash

Figure 4: Time taken for signature generation of a
complete 2-ary tree with respect to its number of
nodes.

generality, we carry out our experiments on complete trees;
the trees are 2-ary with 2 to 65535 nodes (in other words,
the height is from 2 to 16).

Our experimental results show that the amount of time
taken to generate the structural signatures for a tree is prac-
tically the same as the time required by the Merkle hash
technique (Figures 3 and 4). The structural signature takes
around 0.10 seconds more for a tree with 65535 nodes; it
is quite negligible especially when signatures are generated
once and re-used many times.

The time taken for user-side integrity verification is a sig-
nificant factor because it affects the end-to-end response
time at the user side and since integrity verification would
be carried out by many users, the collective overhead would
be very high. Our experimental results also show that the
amount of time taken for integrity verification using our
structural signature scheme is less than the time required by
the Merkle hash technique (Figures 5 and 6). The subtree
whose integrity verification has been carried out is a com-
plete left-most subtree in a complete 2-ary tree of height 16.
Our technique also behaves more efficiently as the size of the
tree increases.

 0

 100

 200

 300

 400

 500

 600

 0 10000 20000 30000 40000 50000 60000 70000

T
im

e
fo

r
in

te
gr

ity
 v

er
ifi

ca
tio

n
of

 th
e

su
bt

re
e

in
 m

ic
ro

se
co

nd
s

Number of nodes in the subtree

Runtime of integrity verification

Structural signature
Merkle hash

Figure 5: Time taken for integrity verification of a
subtree with respect to its number of nodes.

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16

T
im

e
fo

r
in

te
gr

ity
 v

er
ifi

ca
tio

n
of

 th
e

su
bt

re
e

in
 m

ic
ro

se
co

nd
s

Height of the subtree

Runtime of user-side integrity verification

Structural signature
Merkle hash

Figure 6: Time taken for integrity verification of a
subtree with respect to its height.

9.4 Discussions

Dropping of Nodes. In order to detect that one or more
nodes have been dropped in an unauthorized manner from
the subtree, the distributor can create a hash of the struc-
tural position (or signature) of all the nodes in an order
(such as BFS-order) known to the user and send it along-
with the data. The user then re-computes this hash from
the nodes it has received. If both of the hashes match, then
no node has been dropped.

Non-repudiation. The signatures (of a tree and its nodes)
are certified by the trusted owner Alice or a trusted certifi-
cate authority (which binds the owner’s name to the signa-
tures during certification). Therefore Alice nor the certifi-
cate authority can refute the signature or the certificate of
the tree and its nodes.

Dynamic Updates. In the structural signature scheme, there
is no need to compute the signature of the tree at the user-
side in order to verify the integrity of a node or a subtree.
Therefore the signature of the old tree can be used for creat-
ing the structural signatures of the nodes that are inserted
or updated. Use of the signature of the old tree prevents
leakage of the fact that the tree has been updated. Such a
leakage would occur, if a new signature of the tree is com-
puted.

147

www.manaraa.com

Upon insertion of a node, its structural position is com-
puted such that the RPON and RRON preserve correct re-
lationships with the parent and siblings of the node. Then
the node, its content and the structural position are signed
using the signature of the (original) tree, which is followed
by the certification of the signature of the node. Insertion
of a subtree is carried out as a sequence of insertions. Upon
the deletion of a node or a subtree, the signatures of the
nodes and the tree need not be re-computed. Insertion of
an edge is generally followed by a deletion of an old edge
and vice versa, in order to maintain the properties of a tree
- connected and n−1 edges for n nodes. The nodes involved
in the insertion of an edge from x to y (followed by deletion
of z to y) requires re-computation of the signature of y with
respect to x and discarding its earlier signature. Update
of a node/edge and a subtree of m nodes incurs O(1) and
O(m) cost, respectively. In order to accomodate insertions
and maintain appropriate randomness (1

2k), the randomized
traversal numbers should be generated using η (Section 6.2)
as the summation:

P
1≤ j≤ mi

ηj , where mi is chosen ran-
domly.

10. RELATED WORK
Information leakage is an important problem in data shar-

ing and data analysis. Some of the contexts in which in-
formation leakage is currently being addressed are privacy-
preserving databases [6, 24, 27, 29], automated trust nego-
tiation [15], and error correction [9]. However, there is little
work on information leakage through integrity verification
and signature of data, especially trees.

Merkle [21] proposed a digital signature scheme based on
a secure conventional encryption function over a hierarchy
(tree) of document fragments. Since then, this technique
has been used widely, but always with an authentication
path of logarithmic size to verify even a single document
fragment. It also leads to leakage of information (discussed
in Section 2). Buldas and Laur [5] have also found that
Merkle trees are binding (integrity-preserving) but not hid-
ing (confidentiality-preserving).

The use of commutative hash operations (one-way accu-
mulators [13]) to compute the Merkle hash signature pre-
vents leakage related to the ordering among the siblings.
However it cannot prevent the leakage of signatures of a
node and the structural relationships with its descendants
or ancestors. Moreover, one-way accumulation is very ex-
pensive (due to modular exponentiation) in comparison to
the one-way hash operation.

The Merkle hash technique has been widely used in data
authentication. Devanbu et al. used the Merkle hash tech-
nique for authenticating XML data [8]. Bertino et al.
[4] proposed a technique based on the Merkle hash tech-
nique for selective dissemination of XML data in a third
party distribution framework . Kocher [18] proposed to use
Merkle hash trees for distribution to third parties. Goodrich
and Tamassia [12] proposed authenticated dictionaries using
skip lists and commutative hashing (one-way accumulators).
Goodrich et al. [14] proposed techniques to authenticate
graphs with specific path queries and geometric searching.
Martel et al. [20] proposed a general model for authen-
ticated data structures. For secure multicast, Perrig uses
static data ordering over symmetric encryption [23].

Chatvichienchai and Iwaihara [6] proposed mechanisms
for secure updates, without leading to information leakages.

However such mechanism does not address the problem of
information leakages during verification of integrity of par-
tial XML documents. Wang et al. [26] treat structure and
content as first-class protection units. However they focus
on a sharing model, in which the receiver of the data has
access to only the content (nodes) and not to the structural
relationship between them. The paper proposed a scheme
for securing structural information in XML databases: how
to process queries on an encrypted XML database such that
individual element content and structural relations are kept
confidential if the security constraint specified requires so.
In our case, we allow the receiver to have access to both
nodes and the structural relationships between them.

Traversal numbers have been used for querying and nav-
igation of XML data by Zezula et al. [28]. However they do
not address any security issues. They use the non-randomized
version of traversal numbers, which is unsuitable for security
purposes. Traversal numbers have also been used for secure
querying of data [26]. However they have not been used
to define signatures for trees and graphs. Wang et al. [26]
have used a notion similar to traversal numbers in defining
the structural index in XML databases in order to be able to
locate encryption blocks as well as their unencrypted data
nodes that satisfy user query. They use real intervals [0, 1]
for root and every child of the root being assigned a sub-
interval such as [0.5, 0.6]. The first entry in the interval can
be assumed to be referring to the pre-order number and the
second one to the post-order number. However they do not
derive such an interval from traversal numbers nor do they
use traversal numbers for signing trees. None of the pre-
vious approaches propose the use of randomized traversal
numbers for the signature of trees. As such, the previous
approaches do not include security analysis, performance
evaluations nor detailed comparison with the Merkle hash
technique and other secure data publishing techniques de-
rived from the Merkle hash technique.

11. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed the notion of structural sig-

natures for signing trees in order to assure integrity and
maintain confidentiality, thereby providing stronger security
guarantees than those provided by the Merkle hash trees and
related techniques, which are widely used to assure data in-
tegrity. The notion of structural signatures is based on the
simple notion of tree traversals and the fact that a combina-
tion of two tree traversals - post-order and pre-order can be
used to uniquely reconstruct a tree (and any of its subtree).
We also showed that the performance of structural signa-
tures is as good as that of the Merkle hash technique both for
signature generation and integrity verification. Thus with
the equivalent cost, our technique supports stronger secu-
rity guarantees than the Merkle hash. Moreover, structural
signatures reduce the amount of data that need to be sent
from a distributor to a user, by at the same time allowing
the user to reconstruct the subtree from the nodes and to
easily verify the integrity of the data. Like Merkle trees,
structural signatures facilitate precise detection of integrity
violations - the compromised nodes.

As future work, we plan to extend the structural signa-
ture scheme to pervasive devices so that the integrity of a
tree can be verified efficiently at the device-side with less
energy consumption. Further, we plan to explore signature
schemes based on Zero-knowledge proofs; our preliminary

148

www.manaraa.com

analysis indicates however that such techniques are much
more expensive than the structural signature scheme.

Acknowledgement. We thank Prof. Mike Atallah for his
comments on the paper. The authors have been partially
supported by AFOSR grant FA9550-07-1-0041 - Systematic
Control and Management of Data Integrity, Quality and
Provenance for Command and Control Applications.

12. REFERENCES
[1] IBM XL C/C++.

http://www-306.ibm.com/software/awdtools/xlcpp/.

[2] Java cryptographic architecture.
http://java.sun.com/javase/6/docs/technotes/guides/
security/crypto/CryptoSpec.html.

[3] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan
Srikant, and Yirong Xu. Order preserving encryption
for numeric data. In SIGMOD ’04: Proceedings of the
2004 ACM SIGMOD international conference on
Management of data, pages 563–574, New York, NY,
USA, 2004. ACM.

[4] E. Bertino, B. Carminati, E. Ferrari,
B. Thuraisingham, and A. Gupta. Selective and
authentic third-party distribution of XML documents.
IEEE TKDE, 16(10):1263–1278, 2004.

[5] A. Buldas and S. Laur. Knowledge-binding
commitments with applications in time-stamping. In
Public Key Cryptography, pages 150–165, 2007.

[6] S. Chatvichienchai and M. Iwaihara. Detecting
information leakage in updating XML documents of
fine-grained access control. In Database and Expert
Systems Applications, 2006.

[7] S. K. Das, K. B. Min, and R. H. Halverson. Efficient
parallel algorithms for tree-related problems using the
parentheses matching strategy. In Proceedings of the
8th International Symposium on Parallel Processing,
pages 362–367, Washington, DC, USA, 1994. IEEE
Computer Society.

[8] P. Devanbu, M. Gertz, A. Kwong, C. Martel,
G. Nuckolls, and S. G. Stubblebine. Flexible
authentication of XML documents. In CCS ’01, pages
136–145, New York, NY, USA, 2001. ACM.

[9] Y. Dodis and A. Smith. Correcting errors without
leaking partial information. In STOC ’05, pages
654–663, New York, NY, USA, 2005. ACM.

[10] S. K. Goel, C. Clifton, and A. Rosenthal. Derived
access control specification for XML. In XMLSEC ’03:
Proceedings of the 2003 ACM workshop on XML
security, pages 1–14, New York, NY, USA, 2003. ACM
Press.

[11] O. Goldreich. Foundations of Cryptography, volume 1,
Basic Tools. Cambridge University Press, 2001.

[12] M. Goodrich and R. Tamassia. Efficient authenticated
dictionaries with skip lists and commutative hashing,
2000.

[13] M. T. Goodrich, R. Tamassia, and J. Hasic. An
efficient dynamic and distributed cryptographic
accumulator. In ISC ’02: Proceedings of the 5th
International Conference on Information Security,
pages 372–388, London, UK, 2002. Springer-Verlag.

[14] M. T. Goodrich, R. Tamassia, N. Triandopoulos, and
R. Cohen. Authenticated data structures for graph

and geometric searching. In Lecture Notes in
Computer Science, pages 295–313, Berlin /
Heidelberg, 2003. Springer.

[15] K. Irwin and T. Yu. Preventing attribute information
leakage in automated trust negotiation. In CCS ’05,
pages 36–45, New York, NY, USA, 2005. ACM.

[16] V. Kamakoti and C. Pandu Rangan. An optimal
algorithm for reconstructing a binary tree. Inf.
Process. Lett., 42(2):113–115, 1992.

[17] D. E. Knuth. The Art of Computer Programming,
volume 1. Pearson Education Asia, third edition, 2002.

[18] P. C. Kocher. On certificate revocation and validation.
In FC ’98: Proceedings of the Second International
Conference on Financial Cryptography, pages 172–177,
London, UK, 1998. Springer-Verlag.

[19] A. Kundu and E. Bertino. Secure dissemination of
XML content using structure-based routing. In EDOC
’06: Proceedings of the 10th IEEE International
Enterprise Distributed Object Computing Conference
(EDOC’06), pages 153–164, Washington, DC, USA,
2006. IEEE Computer Society.

[20] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz,
A. Kwong, and S. G. Stubblebine. A general model for
authenticated data structures. Algorithmica,
39(1):21–41, 2004.

[21] R. C. Merkle. A certified digital signature. In
CRYPTO ’89, pages 218–238, New York, NY, USA,
1989. Springer-Verlag New York, Inc.

[22] Matthew Morgenstern. Security and inference in
multilevel database and knowledge-base systems. In
SIGMOD ’87: Proceedings of the 1987 ACM SIGMOD
international conference on Management of data,
pages 357–373, New York, NY, USA, 1987. ACM.

[23] A. Perrig. The BiBa one-time signature and broadcast
authentication protocol. In CCS ’01, pages 28–37,
New York, NY, USA, 2001. ACM.

[24] V. Rastogi, D. Suciu, and S. Hong. The boundary
between privacy and utility in data publishing. In
VLDB ’07: Proceedings of the 33rd international
conference on Very large data bases, pages 531–542.
VLDB Endowment, 2007.

[25] D. R. Stinson. Cryptography: Theory and Practice.
CRC Press, third edition, 2005.

[26] H. Wang and L. V. S. Lakshmanan. Efficient secure
query evaluation over encrypted XML databases. In
VLDB’06: Proceedings of the 32nd international
conference on Very large data bases, pages 127–138.
VLDB Endowment, 2006.

[27] R. C. Wong, A. W. Fu, K. Wang, and J. Pei.
Minimality attack in privacy preserving data
publishing. In VLDB ’07: Proceedings of the 33rd
international conference on Very large data bases,
pages 543–554. VLDB Endowment, 2007.

[28] P. Zezula, G. Amato, F. Debole, and F. Rabitti. Tree
signatures for XML querying and navigation. In
Database and XML Technologies, pages 149–163, 2003.

[29] N. Zhang and W. Zhao. Distributed privacy preserving
information sharing. In VLDB ’05: Proceedings of the
31st international conference on Very large data bases,
pages 889–900. VLDB Endowment, 2005.

149

www.manaraa.com

APPENDIX

Table 1: Computation/verification of Merkle hash signature of S2 in the health record in Figure 1(b)
Node a Nodes whose Merkle hash Distinct information leakages

used in this particular order during verification of a
to compute/verify Merkle hash of a

a13 a13 none
a12 a12 none
a10 a12, a13, a10 none
a8 a10, a11, a8 signature of a11 ,

a11 as sibling of a10,
a11 as child of a8 ,
a11 as to the right of a10

a5 a7, a8, a9, a5 a7-specific leakage: signature of a7 ,
a7 is sibling of a8 ,
a7 is child of a5),
a7 is to the left of a8);
a9-specific leakage: signature of a9 ,
a9 is sibling of a8 ,
a9 is child of a5 ,
a9 is to the right of a8

a4 a5, a6, a4 signature of a6 ,
a6 is sibling of a5 ,
a6 is child of a4 ,
a6 is to the right of a5

Table 2: Inference of sensitive information from the leakage during the integrity verification of S2 in Fig-
ure 1(b)

Leaked information Inference from the leakage
during verification of a node in the health-care context

signature of a11 AND Patient has gone through another Chemotherapy.
(a11 as sibling of a10 OR
a11 as child of a8)
a11 as to the right of a10 If sibling order represents more information

such as temporal order, then more sensitive information
can be derived such as it can be inferred if the chemotherapy
referred to by node a11 was administered
earlier or later than the one referred to by a10.

signature of a7 AND Patient has gone through another type of treatment;
(a7 is sibling of a8 OR also inferred is - it to be either Surgery or Medication
a7 is child of a5)
a7 is to the left of a8 More leakage related to the order such as temporal order

signature of a9 AND Patient has gone through another type of treatment;
(a9 is sibling of a8 OR also inferred is - it to be either Surgery or Medication
a9 is child of a5)
a9 is to the right of a8 More leakage related to the order such as temporal order

signature of a6 AND Patient suffers from another critical disease;
(a6 is sibling of a5 OR can be determined which disease it is
a6 is child of a4) from the specialty of the hospital
a6 is to the right of a5 More leakage related to the order such as temporal order:

time of treatment of this disease in this hospital relative
to the time of treatment of Cancer

150

